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Procrustes rotation is a powerful technique to compare 
subspaces. In this paper, Procrustes rotation is used to 
select the minimum number of original variables that are 
important to describe a system and to statistically com- 
pare different sampling seasons. In the latter case, 
Pmcrustes rotation methodology has been applied to 
determine similarities and Merences between sampling 
seasons in urban soils. Four seasons (during one year) 
were carried out to develop a monitoring scheme to 
control metal pollution in a medium-city area. Future 
efforts to monitor metal pollution will be based on analyz- 
ing only two or (at most) three metals, Le., Pb, Co, and 
Cd. 

When analytical studies (typically, environmental studies) are 
made, two questions are frequently posed by analytical chemists: 
First, should all initially considered variables be maintained in 
future samplings? Second, are all analytical tests necessary to 
describe the system? 

Considering the latter question, what we look for (intuitively) 
is some (statistical) technique to find the minimum number of 
original variables that allows us to describe our system with 
sufficient accuracy. To answer the former question, some kind 
of intersampling seasonal comparison by means of some statistical 
technique is needed. Studying what happensin an interseasonal 
data sense, we should be able to describe which variables have a 
similar pattern/behavior along the different sampling seasons. Of 
course, the opposite will also be useful, i.e., to know what variables 
(if any) cause differences in the several data set patterns. 

If we could apply some methodology to address both problems 
simultaneously, we could obtain not only a better understanding 
about the system but improvements in productivity, making use 
of lower resources, lower delay times, lower laboratory workloads, 
etc. 

Several techniques have been considered with similar objec- 
tives. Good results have been reported by Grimalt et al.1*2 using 
factor analysis and Krieg and Einax3 and Kr~anowski~ using a 
discriminant way. Principal component analysis (PCA) and factor 
analysis are currently also used with similar purpose. These 
methods have a major disadvantage. They condense all the 
information in several abstract factors or principal components 
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(PCs) which are combinations of the overall set of variables, and 
it is strictly not correct to delete (and select) variables taking into 
account their importance in these abstract factors. 

PROCRUSTES ROTATION 
Both topics can be solved by considering that the main idea 

is to compare two or more multidimensional data sets (e.g., one 
from each sampling season). This can be achieved using the 
(mathematically) well-known technique Procrustes rotation. In 
the Greek legend, Procrustes lodged travelers in his bed and 
during sleep either cut their legs or elongated them to fit them 
precisely into the bed.5 In analogy with Procrustes himself, in 
Procrustes rotations the two sets of projections are rotated to a 
consensus target vector so as to match as closely as possible 
(including rotation, translation, stretching), in the least-squares 
sense. 

This mathematical technique has been extensively studied by 
Krzanowski-8 and applied to the petrochemical industry field by 
Deane and MacFeeg and, more recently, by Andrade et al.l0 
Procrustes rotation is also extensively used in the spectroscopic 
area to identify pure spectra and to quantify analytes;11J2 here the 
Procrustes technique is so powerful that typical calibration can 
be avoided. Recently, there has been one attempt to extend this 
interesting technique to the environmental field by Andrade et 
all3 The present work is one further step forward in that 
preliminary work where the interseasonal comparison is intro- 
duced. In this paper, we are not focused in presenting all the 
detailed algorithms but their general overview. 

Selection of the Minimum Number of Original Variables 
To Describe One Sampling Season. Only a brief discussion is 
provided to center our work. A detailed mathematical treatment 
can be found in refs 8 and 13. 

The main objective is to select redundant variables in raw data, 
which is equivalent to the identification of a subset of k variables 
that conveys the main structure of the raw data. Each variable is 
deleted in turn from the data set and two subspaces are compared 
by rotation, translation, and stretching by using the Procrustes 
rotation technique. The two compared subspaces are the scores 
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from a PCA using all variables and series from a PCA obtained 
after deleting each variable. A statistic is defined, the "predicted 
residual error sum of squares", (PRJF2PJ4 (see eq 1). Important 
variables will produce larger PRESS values, and they should be 
maintained in the data set. 

where m is the number of PCs considered, n the number of 
objects, p number of variables; X f  one element of the original data 
matrix; and 2,j is the prediction of the Xij element after "recon- 
struction" from the Procrustes rotation model, using m PCs. 

An important problem here is to select the optimum number 
of PCs since the subspace comparison is made in a PCA base (to 
avoid noise and unuseful information). This is made by singular 
value decomposition and calculating the W, statistic6J0 (see eq 
2). The W, values are expressed in a cross-validation scheme 
and represent the increase in predictive information supplied by 
the mth component divided by the average predictive information 
in each of the remaining components. Important components 
should yield values of W, greater than -0.9. 

[(PRESS(m - 1) - PRESS(m))/D,] 
(PRESS (m) /Drl 

wm = 

where m is the number of the PCs, PRESS was calculated above, 
and D, and Dr are degrees of freedom (D, = n + p - 2m; D, = 
( n  - U P  - Dm). 

Using these tests, the subset of original variables will comprise 
an important percentage of the initial information and should 
preserve the principal patterns in the original data set. 

Intercomparison of Sampling Seasons. First, a PCA must 
be made on each data set (one data set per sampling). The 
optimum number of factors has to be selected by using some 
standard method; e.g., the Malinowski test,15-17 cross-validation, 
or the above-mentioned W, statistic. Malinowski developed a test 
for determining the true dimensionality of a data set based on 
the Fisher variance ratio test. It is an empirical test which plot 
get a minimum when the optimum number of PCs is reached (see 
eq 3). 

li 
IND(m) = ,/ i=m+l f: nf$ - m) 3 

(3) 

where 1 is the corresponding eigenvalue, n and p are as above, 
and m is the corresponding number of the PCs. 

It is our experience, that both the Malinowski test and the 
W, statistic give good results and are adequate for most purposes. 
The Malinowski test is simpler and faster to implement in a 
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program. Note also that it is not necessary to select the same 
number of PC (factors) in each data set. 

The following treatment was originally developed by Krza- 
For simplicity, we will only consider two sampling 

seasons (two sample data sets) on which PCA has been made. 
Let X and Y matrices k x p ,  where k is the number of selected 

PCs and p is the number of original measured variables. X will 
contain the loadings from (e.g.) the first sampling season and Y 
the loadings from (e.g.) the second one. 

Define N = XY'YX' (=W, where T = XY' and the prime 
denoting transpose of matrix). Krzanowski proved the following 
two results:8 l8 

(1) The minimum angle between an arbitrary vector in the 
space of the first k principal components from the first sampling 
season and the one most nearly parallel to it in the space of the 
first k principal components of the second sampling season is 
given by c o s 1  (A,)1/2, where A, is the largest eigenvalue of N .  

(2) Define b, = X'a, (i = 1, ..., k ) ,  where a, is the A, associated 
eigenvector. Then b,, ..., bk form a set of mutually orthogonal 
vectors embeded in the first subspace, and Y'Yb,, ..., YYbk form 
a corresponding set of mutually orthogonal vectors in the second 
season into which the differences between the subspaces can be 
partitioned. The angle between the ith pair b, - Y'Yb, is given 
by c0s-l (AJ1/* (i = 1, ..., k ) .  

The similarities between the sampling seasons can be exhibited 
solely by studying the pairs b, - Y'Yb, with ,Il being a measure 
of the contribution of the ith pair to the total similarity. Adding 
more pairs (new dimensions), planes and surface of similarities 
are obtained. 

A quant3ication of the extent to which two r-dimensional 
portions differ is provided by the r critical angles cos-l ..., 
c o s 1  If the subspaces have very strong similarities there 
will be r angles close to zero. When the r values are large (close 
to 30 or greater) both spaces differ in that r-dimension. 

A very important advantage of this approach is that although 
b, and Y'Yb, are mathematical vectors without simple meaning, 
we can define a consensus vector directly linked with the original 
measured variables. The consensus vector is a new vector that 
is closest to both b, and Y'Yb,; it is the bisector of the angle 
between them. The bisector is given by eq 4, where I is the (p 
x p )  identity matrix.8 

ci = [2(1 + (4) 

The set of ci, ..., ck defines a k-dimensional subspace that is 
the average or consensus of both sampling season data sets, and 
most important, it can be given a chemical interpretation. The 
sole restriction of the model is that all the considered data sets 
must have exactly the same variables. 

The idea behind this mathematical treatment is to rotate, 
translate, and stretch one PC subspace to resemble the other 
subspace as much as possible. This is why Procrustes rotation 
is so useful. If similarities are found, the original subspaces 
(original seasonal data sets) will have corresponding similarities 
(and, of course, the same holds for differences). 

(18) Krzanowski, W. J.JASA,J. A m .  Stat. Assoc. 1979, 74,703-707 (correction 
in 1981, 76, 1022). 
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Table 1. PC Loadings, Sampling Season 1 

variable PC1 PC2 PC3 PC4 

Cd -0.33 0.33 0.05 -0.20 
co 0.41 0.28 -0.05 0.03 
c u  -0.31 0.34 0.21 -0.06 
Cr 0.31 0.39 -0.07 -0.07 
Fe 0.42 0.15 0.23 -0.09 
Mn 0.19 0.03 0.65 0.13 
Ni 0.26 0.35 -0.01 -0.05 
Pb -0.28 0.40 0.08 -0.14 
Zn -0.35 0.27 0.16 -0.13 
humidity -0.20 -0.31 0.32 0.06 
LO1 0.12 -0.20 0.55 -0.35 
PH -0.01 0.20 0.18 0.87 

%explained variance 35.0 22.1 12.8 8.0 
% cumulative variance 35.0 57.1 69.9 77.9 

PC5 

-0.16 
0.13 
0.36 
0.24 
0.01 

-0.04 
0.15 
0.03 

-0.22 
0.74 

-0.33 
-0.19 

5.5 
83.5 

SAMPLING AND ANALYTICAL VARIABLES 
Four sampling seasons (1, fall; 2, winter; 3, spring; 4, summer) 

were organized to study soil contamination in a medium-size city 
and its neighborhood (-300 000 inhabitants). The studied area 
includes one highway, a medium-size city (La Coruiia), an 
industrial area, and one main avenue with very high traffic levels. 

Soils were taken in public gardens, uncultivated fields, and 
across several perpendicular transects along the highway. Several 
sampling sites were considered in each transect. Samples were 
taken from 0 to 5 cm depth, air-dried, ground, and sieved through 
a 2 mm mesh sieve in order to eliminate gravel, stones, and large 
fragments. After that, samples were dried by heating at 60 "C 
for 48 h and sieved to ~ 0 . 2  mm. The fraction of soil that was <2 
mm was used to determine moisture content (at 105 "C), pH (1: 
2.5 in water), and organic material as loss on ignition (LOI) at 
450 "C for 6 h.19,20 

Exactly 0.3 g aliquots of <0.2 mm soil fractions were subjected 
to the chemical extraction procedure, using HN03(conc), and 
microwave-heated in Teflon vessels.21 

Twelve variables were analyzed in each of the 95 samples. 
These were Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, and Zn concentrations, 
humidity, pH, and LOI. Metals were analyzed using flame or 
graphite furnace AAS when concentrations were low (Cd, Cr, Co, 
Ni). Accuracy was checked using certified reference materials 
(BCR, CRM141, calcareous loam soil; BCR, CRM277, estuarine 
sediment). Good agreement was obtained when certified and 
experimental values were compared. None of the studied vari- 
ables had a standard deviation of zero. 

RESULTS AND DISCUSSION 
Principal Componenthalysis. Tables 1-4, summarize the 

main results from the PCA studies (rotation has not been applied) 
for each sampling season. Loadings are given with only two 
significant digits, and five principal components are presented for 
each season. The cumulative percentage of explained variance 
lies between 75 and 80%. Note that the variances explained by 
each lirst, second, third, etc., PC are quite similar among the 
different sampling seasons. 

(19) M.A.P.A. Oficial Methods of Analyses; Secretaria General Tecnica del 
Ministerio de Agricultura, Pesca y Alimentacih: Madrid, Spain, 1986 Vol. 
111. 

(20) American Association for Testing and Materials. Annual Book ofASTM 
Standards; ASTM: Philadelphia, 1993; Vol 04.08, pp 360-361. 

(21) Carlosena, A; Prada, D.; Muniategui, S.; Lopez, P.; Andrade, J. M.; Gonzalez, 
E. 2nd International Conference on Polluted Soils. IHOBE, Ktoria-Gasteiz, 
Spain, September 21-22, 1994. 
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Figure 1. Soils distribution in the PC1 -PC2 and PC1 -PC3 score 
subspaces: (A) first sampling season; (B) second sampling season. 
Highway samples (0), transect samples (x), main avenue with high 
traffic levels (*), and city gardens, (+). 

First Season. Table 1 shows that the first PC is related to Fe, 
Co, and Zn, being strongly associated to the natural soils' 
variability. The second PC, associated with Pb, Cr, Ni, Cu, and 
Cd, shows a clear relation to anthropogenic pollution sources. PC 
3 is associated with Mn and LOI; the fourth PC is defined 
essentially by pH and the iifth PC by humidity. We will analyze 
the first sampling season in some more detail since it will be useful 
to understand the below described results and discussion. 

The first PC shows differences beween two esential blocks of 
samples: gardens in the city, samples along the highway transects, 
and the highway itself. As illustrated by Figure lA, a simple 
classification rule is to use the sample score. It is zero or close 
to zero for the gardens' samples. These have low values in Co 
and Fe and high values in Zn (-6 ppm Co, 20 g/kg Fe, and 300 
ppm Zn) . Clearly negative scores define samples from the second 
area (highway and its transects); these have high values in Co 
and Fe (-20 ppm and 35 g/kg, respectively), and lower values in 
Zn (-100 ppm). 

The second PC discriminates between subareas in the two 
groups. Scores near zero or negative are related to samples taken 
very close to the highway (sampling distance lower than 0.3 m 
from the border). Samples from different distances from the 
transects form a group with clearly positive scores. Highway 
samples have values like [Pbl x 300 ppm; [Crl % 60 ppm, and 
[Nil 100 ppm or sometimes even higher. Samples from 
transects have lower values: [Pbl < 20 ppm; [Crl % 40 ppm, and 
[Nil = 20 ppm (see Figure 1). 

Samples taken close to the main avenue with high traf6c levels, 
have high, positive scores ([Pbl L 500 ppm, ICrl 30 ppm, [Nil 
= 35 ppm), whereas the rest of the points (see Figure 1) are from 
the city gardens (Pb variability, from 100 to 300 ppm; [Cr] x 25 
ppm, and [Nil x 20 ppm). PCs 3-5 do not add more differentia- 
tion. 

So we can discriminate between four groups of samples: 
highway samples (O), transect samples (x), main avenue with 
high traffic levels (*), and city gardens (+). 

Second Season. Table 2 shows the loadings from each of the 
five most important PCs obtained from second season data. The 
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Table 2. PC Loadings, Sampling Season 2 

variable PC1 PC2 PC3 PC4 PC5 

Cd -0.38 0.26 0.12 -0.12 -0.06 
c o  0.37 0.35 -0.06 -0.07 -0.07 
cu -0.34 0.32 0.21 0.05 0.04 
Cr 0.27 0.43 0.04 -0.01 -0.12 
Fe 0.41 0.27 0.17 0.12 0.03 
Mn 0.22 0.13 0.15 0.69 0.11 
Ni 0.09 0.42 -0.35 -0.23 -0.45 
Pb -0.33 0.35 0.07 0.07 0.12 
Zn -0.38 0.27 0.16 0.04 -0.01 
humidity 0.19 0.18 0.11 -0.47 0.77 
LO1 0.08 -0.02 0.69 0.07 -0.14 
PH -0.13 0.17 -0.49 0.44 0.37 

%explained variance 34.7 19.8 12.3 9.4 6.6 
% cumulative variance 34.7 54.5 66.8 76.2 82.8 

Table 3. PC Loadlngs, Sampling Season 3 

variable PC1 PC2 PC3 PC4 PC5 

Cd -0.31 0.36 0.10 -0.05 -0.08 
co 0.41 0.22 -0.11 -0.06 -0.06 
cu -0.24 0.32 0.08 0.41 0.45 
Cr 0.30 0.43 -0.04 -0.15 -0.06 
Fe 0.42 0.14 -0.12 0.16 -0.01 
Mn 0.22 -0.01 -0.46 0.66 -0.12 
Ni 0.25 0.43 -0.01 -0.24 -0.01 
Pb -0.25 0.43 0.02 0.14 -0.07 
Zn -0.32 0.35 0.00 0.06 0.02 

LO1 0.08 -0.11 0.63 0.42 -0.40 
PH -0.29 -0.05 -0.50 0.13 0.14 

humidity 0.22 0.09 0.30 0.26 0.86 

% explainedvariance 36.8 21.4 11.3 7.9 6.4 
%cumulative variance 36.8 58.2 69.5 77.4 83.8 

first, associated with Fe, Zn, Cd, and Co, denotes a natural 
variability among soils. The second PC, related to Cr, Ni, and 
Pb, reveals the influence of human pollution. The third and fourth 
PCs are related to LO1 and Mn, respectively. 

Figure 1B shows the bidimensional projection scores PC1- 
PC2 and PC1-PC3, revealing a pattern very similar to the first 
sampling season, although it can be seen that the four groups of 
samples are not so clearly distinguished. This fact can be 
attributed to the climatological conditions linked to the winter 
season. Heavy winter rainfalls may homogenize the different 
polluted areas. 

Third Season. Table 3 summarizes the loadings for the third 
season. Again, a natural pattern (first PC involves Fe, Co, and 
Zn) and a pollution pattern (second PC defined mostly by Pb, Ni, 
and Cr) can be observed. Figure 2 rheals  a sample score 
distribution close to the first seasons. In spite of this, the main 
avenue vs city gardens and highway vs transects differentiation 
are not always distinguishable (we attribute this fact to the spring 
rainfalls in La Coruiia, northwest of Spain). 

Fourth Season. Table 4 shows the first five loadings for this 
sampling season. Good similarities are observed when compared 
to the first season (see Figure 2). The interpretation is as above. 

Selection of the Minimum Number of Variables To De- 
scribe Each Sampling Season. The first problem to be 
addressed is to select the optimum number of principal compo- 
nents to describe each sampling season. As stated above, the 
Wm statistic or the Malinowski test is useful. In our studies, both 
statistics gave similar conclusions. From Table 5, it can be seen 
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Figure 2. Soil distribution in the PC1-PCP and PCI-PC3 score 
subspaces: (A) third sampling season; (B) fourth sampling season. 

Table 4. PC Loadings, Sampling Season 4 

variable 
Cd 
c o  
cu 
Cr 
Fe 
Mn 
Ni 
Pb 
Zn 
humidity 
LO1 
PH 
% explained variance 
% cumulative variance 

PC 1 

-0.35 

-0.30 
0.38 

0.24 
0.40 
0.28 
0.22 

-0.30 
-0.35 

0.06 
0.00 

-0.29 

41.2 
41.2 

PC2 

0.29 
0.30 
0.30 
0.47 
0.19 
0.05 
0.44 
0.32 
0.25 

-0.18 
-0.25 

0.10 

20.2 
61.4 

PC3 

0.10 
0.02 
0.22 
0.01 
0.07 
0.26 
0.05 
0.20 
0.24 
0.55 
0.60 

-0.32 

11.3 
72.7 

PC4 

0.06 
-0.02 

0.01 
-0.14 

0.07 
0.53 

-0.07 
-0.06 

0.02 
0.51 

-0.45 
0.46 

6.8 
79.5 

PC5 

0.02 
-0.03 
-0.30 

0.23 
-0.12 
-0.58 

0.11 
0.07 
0.03 
0.59 

-0.32 
-0.19 

6.2 
85.8 

Table 5. Selection of the Number of PCs Using the W,,, 
Statistic 

sampling season eigenvalue 
ordering 1st 2nd 3rd 4th 

1 1.87 2.19 2.51 3.87 
2 2.72 2.16 2.77 2.19 
3 0.84 0.32 0.44 0.67 
4 0.39 0.26 0.08 0.74 
5 -0.11 0.56 0.19 0.37 
6 -0.32 0.14 0.23 -0.28 
7 0.03 0.04 -0.37 -0.24 
8 0.09 0.29 0.14 -0.21 
9 -0.29 -0.41 0.08 -0.07 

10 0.07 -0.35 0.09 0.28 
11 -0.19 -0.06 -0.18 -0.12 

that the Wm statistic strongly suggests two PCs as the most 
important ones for describing our data sets. 

When the Malinowski's test is applied, a minimum is reached 
in about two or three. We found that two principal components 
are sufficient to describe the important information in all the 
seasonal data sets. In fact, this is a positive coincidence since 
there is no critical reason to suppose this equality, except that 
two PCs have been sufficient to adequately describe the different 
sample patterns in all four cases. 

2376 Analytical Chemistry, Vol. 67, No. 14, July 15, 7995 



SCORE SUBSPACES-SELECTED VARIABLES 

; 2 .  

0. 

SCORE SUBSPACES-SELECTED VARIABLES 
* 

5 

PC2 -5 -5 pc1 
PC1 

SCORE SUBSPACES-ALL VARIABLES 

4 "I 

SCORE SUBSPACES-ALL VARIABLES 

4- 

m 2  P o  1 o i o o  O f 0  , o f + & +  ** 1 ;..-.".. -2 O s"., 1 2:L +J&$ x e+ +++ + 
-5 -5 o +  

10 4 0 °  O 5 

* 0 
PC2 -10 -5 pc1 0 5 

-6 

-2 % +4$$ 

-5 PC2 -5 -5 pr, ?5 0 5 
PCl 

. _ I  

PC1 

Figure 3. First sampling season: PC scores before and after 
selection of the most important variables were applied. 
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Figure 4. Second sampling season: PC scores before and after 
selection of the most important variables were applied. 

Table 6. Selected Subsets of Variables 

last 
sampling selected retained no. of 
season variables variable PCS 

1 Co, Pb Cd 2 
2 Co, Pb Cd 2 
3 Co, Pb Cd 2 
4 Pb, Cd co 2 

In Procrustes analysis, if k PCs best describe our system, a 
minimum of k variables will be considered as the most important 
ones. Table 6 tabulates the variables selected for each sampling 
season. If we consider only the last variable being deleted in turn, 
a perfect agreement is observed, revealing that all the sampling 
seasons are, principally, characterized by the same variables. It 
is noteworthy that these selected variables characterize the 
artificial pollution. 

Figures 3-6 compare the original PC1-PC2 and PC1-PC2- 
PC3 score subspaces (all variables) and those obtained after 
variable selection. A perfect agreement is observed. Even the 
"V" shape observed when all PCs are used becomes more 

Figure 5. Third sampling season: PC scores before and after 
selection of the most important variables were applied. 
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Figure 6. Fourth sampling season: PC scores before and after 
selection of the most important variables were applied. 

pronounced in the subspaces obtained after variable selection. This 
is a property of the Procrustes rotation behavior, a reduction in 
the intracluster distance is obtained, probably because of noise 
reduction. In the second, third, and fourth season data (see 
Figures 4-6), a sign change in either PC1 or PC2 is observed 
upon variable reduction, but this has no relevance because it is 
caused by a lack of a unique mathematical origin of coordinates 
when different PCAs are made. 

Of course, some information is lost when variables are 
excluded, but with only two variables, we still describe the 
samples' characteristics very well. 

Intercomparison of Different Sampling Seasons. We are 
looking for some kind of consensus subspace that would comprise 
the main similarities (and/or differences) between four different 
data subspaces. The first step has been addressed in the 
preceding topic; the number of relevant principal components was 
found to be two. In spite of this, we have considered three and 
even four PCs on each data set to get a broad background for 
our comparison. 

Table 7 summarizes these studies. For each dimension in the 
original subspaces (Le., two, three, and four PCs) the consensus 
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Table 7. Consensus Subspaces and Vectors 

no. of PCs in the original subspaces and 
consensus vectors for each size 

2 PC 3 PC 4 PC 
variable 

Cd 
c o  
Cu 
Cr 
Fe 
Mn 
Ni 
Pb 
Zn 
humidity 
LO1 
PH 

0.46 -0.06 0.46 0.00 0.11 0.46 -0.05 -0.07 -0.10 
-0.16 -0.49 -0.10 0.49 -0.05 -0.07 0.47 0.06 -0.17 

0.43 -0.10 0.44 0.05 0.21 0.47 0.04 -0.16 0.12 
0.02 -0.54 0.07 0.52 0.00 0.10 0.47 0.02 -0.26 

-0.24 -0.40 -0.18 0.45 0.11 -0.12 0.48 -0.09 0.05 
-0.17 -0.16 -0.13 0.26 0.19 -0.03 0.41 -0.05 0.70 

0.07 -0.48 0.13 0.45 -0.12 0.13 0.38 0.11 -0.35 
0.46 -0.15 0.47 0.09 0.12 0.49 0.06 -0.08 -0.03 
0.45 -0.03 0.46 0.00 0.18 0.47 -0.03 -0.11 0.04 

-0.10 0.01 -0.09 0.02 0.43 -0.03 0.07 -0.32 0.18 
-0.15 0.10 -0.15 -0.07 0.72 -0.07 0.00 -0.71 0.12 

0.22 0.04 0.22 -0.02 -0.36 0.20 0.01 0.55 0.46 

angles 

2 PC 3 PC 4 PC 

sampling 1 6.58 23.97 5.40 19.93 41.55 4.45 19.08 17.18 17.14 
sampling 2 6.35 19.01 5.47 15.22 22.09 3.88 9.45 14.34 41.16 
sampling3 3.66 17.65 4.17 10.58 43.11 2.60 9.71 14.09 13.17 
sampling 4 6.58 10.36 4.76 9.01 13.65 4.01 11.64 10.76 37.05 

vectors are obtained, and one angle (expressed in degrees; see 
lower boxes in Table 7) is calculated to obtain a measure of the 
degree of similarity between each consensus vector (plane, 
surface) in the reduced set and each vector (plane, surface) in 
the original subspaces. 

It can be seen that lowest angles are always associated with 
the first and second consensus vectors, thus comprising major 
similarities between the four sampling seasons. The thiid, fourth, 
etc., vectors reveal differences as expected. Once the consensus 
vectors have been obtained, a combined study between loadings 
from each season and the consensus loadings is needed to convert 
consensus loadings into something chemically meaningful. The 
first consensus vector is defined (principally) by Pb, Cd, Zn, and 

Cu. These are the variables for which the sample scatter is most 
similar in all four sampling seasons. 

Pb and Cu were not in the individual season's first PCs 
although they are in the first consensus vectors. This shows they 
do not best explain the overall sample variability on each season 
(which is reasonable since the natural soil variability is too strong), 
but they are important when looking for similarities in the different 
sample patterns (distributions). 

The second consensus vector, linked to Cr, Co, and Ni, also 
describes similarities between the four sampling seasons as it can 
be deduced from the angle values. 

Consider now (artificially) three or four dimensions for the 
original data sets. The third consensus vector is principally 
defined by LOI; its values for the first sampling season are quite 
different from the other seasons (no clear reason has been found), 
so this is the (consensus) vector where differences arise. The 
fourth consensus vector, related to Mn, presents angles as large 
as 40". This low correlation is in agreement with the high 
variability in Mn values observed from sample to sample and from 
one sampling season to another. 

Finally, it is worth noting that the two selected variables agree 
with the variables that in the first consensus vector best describe 
similarities between sampling seasons. ,This reveals that Pb and 
Co (and even Cd) are the key variables when soil pollution is 
monitored in the areas covered by these studies. If environmental 
disasters do not occur, the present pollution sources do not change 
significantly, or both, these are the most suitable variables for a 
simple, fast pollution monitoring scheme. 
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